
Gamma Astro Data Specs
Documentation

Release 0.1

Gamma-ray astronomy community

Jun 20, 2018

Contents

1 Table of contents 3

i

ii

Gamma Astro Data Specs Documentation, Release 0.1

A place to propose and share data format descriptions for gamma-ray astronomy.

• Repository: https://github.com/open-gamma-ray-astro/gamma-astro-data-formats

• Docs: http://gamma-astro-data-formats.readthedocs.org/

• Mailing list: https://lists.nasa.gov/mailman/listinfo/open-gamma-ray-astro

Contents 1

https://github.com/open-gamma-ray-astro/gamma-astro-data-formats
http://gamma-astro-data-formats.readthedocs.org/
https://lists.nasa.gov/mailman/listinfo/open-gamma-ray-astro

Gamma Astro Data Specs Documentation, Release 0.1

2 Contents

CHAPTER 1

Table of contents

1.1 Background information

This section contains background information and basic definitions.

It’s purpose is two-fold:

1. Users and developers can learn or look up the nitty-gritty details how coordinates, times, . . . are defined and
basic information about file and storage formats (e.g. how axis-information for multi-dimensional arrays can be
stored in FITS files).

2. Data format specifications can refer to the definitions in this section, e.g. we don’t have to repeat that the azimuth
angle is measured east of north in each format specification where azimuth is used.

1.1.1 About

What is this?

This is a grassroots effort to describe data formats that are in use, but are not specified anywhere else. Examples range
from FITS format instrument response functions for imaging atmospheric Cherenkov telescopes (IACTs) to YAML
format spectral and spatial model specifications, to high-level analysis results like spectra and light curves.

The formats described here and the whole effort are not official in any way, i.e. not supported or ratified by any
institutes, collaborations or committees. In some cases the formats described here will likely be adopted or superceded
by more official formats in the coming years.

Everyone is welcome to adopt these formats or even contribute, development and discussion is done openly on Github.
Especially if you are a software library or tool developer, we encourage you to support the formats described here
instead of inventing your own.

3

Gamma Astro Data Specs Documentation, Release 0.1

How to contribute?

The documentation is written in restructured text (RST) and rendered to HTML and PDF with Sphinx and hosted at
Readthedocs.

Everyone can contribute by making a pull request with a change or addition to https://github.com/
open-gamma-ray-astro/gamma-astro-data-formats or by sending comments and feedback via the Github issue tracker,
or, for high-level and important things, to https://lists.nasa.gov/mailman/listinfo/open-gamma-ray-astro .

We use the Sphinx Readthedocs theme as described here, i.e. to build the HTML docs locally you have to pip
install sphinx_rtd_theme before make html.

References

Existing FITS specs and recommendations:

• http://fits.gsfc.nasa.gov/fits_home.html

• http://fits.gsfc.nasa.gov/registry/grouping.html

Existing HEASARC specs and recommendations:

• https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/ofwg_recomm.html

• http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_doc.html

1.1.2 Time

This page gives background information on times in gamma-ray astronomy.

It’s not a format specification, rather a summary of the status quo:

• How times are stored in files.

• How times are represented in science tool codes

• How times are input by users and output to users from these codes.

Introduction

Times are used in many places in high-level analysis, e.g.

• Observations have start and end times and sometimes are split up into “good time intervals” GTIs when hardware
issues occur or clouds pass the field of view.

• Gamma-ray events are observed at given times, and those times are needed to convert the reconstructed AltAz
position to RaDec, or to select events in a given GTI.

• Some gamma-ray sources are variable, e.g. AGNs can flare on timescales of seconds or minutes, or pulsars emit
a periodic signal on timescales of seconds or milli-seconds.

This page contains specifications and recommendations how to work with times for high-level gamma-ray astronomy,
i.e. how to store times in files (e.g. event lists, GTI extension, observation tables) and take times as input and output
in analysis tools.

4 Chapter 1. Table of contents

http://sphinx-doc.org/rest.html
http://sphinx-doc.org/index.html
https://readthedocs.org
https://github.com/open-gamma-ray-astro/gamma-astro-data-formats
https://github.com/open-gamma-ray-astro/gamma-astro-data-formats
https://lists.nasa.gov/mailman/listinfo/open-gamma-ray-astro
http://fits.gsfc.nasa.gov/fits_home.html
http://fits.gsfc.nasa.gov/registry/grouping.html
https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/ofwg_recomm.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_doc.html

Gamma Astro Data Specs Documentation, Release 0.1

Reference documents and tools

Basically we follow Time in Fermi data analysis, so this is the number one reference.

The SOFA Time Scale and Calendar Tools document provides a detailed description of times in the high-precision
IAU SOFA library, which is the gold standard for times in astronomy. The SOFA time routines are available via the
Astropy time Python package, which makes it easy to convert between different time scales (utc, tt and mjd in this
example)

>>> from astropy.time import Time
>>> time = Time('2011-01-01 00:00:00', scale='utc', format='iso')
>>> time
<Time object: scale='utc' format='iso' value=2011-01-01 00:00:00.000>
>>> time.tt
<Time object: scale='tt' format='iso' value=2011-01-01 00:01:06.184>
>>> time.mjd
55562.0

as well as different time formats (iso, isot and fits in this example)

>>> time.iso
'2011-01-01 00:00:00.000'
>>> time.isot
'2011-01-01T00:00:00.000'
>>> time.fits
'2011-01-01T00:00:00.000(UTC)'

If you don’t want to install SOFA or Astropy (or to double-check), you can use the xTime time conversion utility
provided by HEASARC as a web tool.

Finally, the “Representation of Time Coordinates in FITS” standard (2015A%26A. . . 574A..36R) explains in detail
how times should be stored in FITS files.

Precision

Depending on the use case and required precision, times are stored as strings or as one or several integer or floating
point numbers. Tools usually use one 64-bit or two 64-bit floating point numbers for time calculations.

For high-level gamma-ray astronomy, the situation can be summarised like this (see sub-section computation below
for details):

• Do use single 64-bit floats for times. The resulting precision will be about 0.1 micro-seconds or better, which
is sufficient for any high-level analysis (including milli-second pulsars).

• Do not use 32-bit floats for times. If you do, times will be incorrect at the 1 to 100 second level.

For data acquisition and low-level analysis (event triggering, traces, . . .), IACTs require nanosecond precision or
better. There, the simple advice to use 64-bit floats representing seconds wrt. a single reference time doesn’t work!
One either needs to have several reference times (e.g. per-observation) or two integer or float values. This is not
covered by this spec.

Computation

The time precision obtained with a single 32-bit or 64-bit float can be computed with this function:

1.1. Background information 5

http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data/Time_in_ScienceTools.html
http://www.iausofa.org/2015_0209_C/sofa/sofa_ts_c.pdf
http://docs.astropy.org/en/latest/time/index.html
https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/xTime/xTime.pl
http://adsabs.harvard.edu/abs/2015A%26A...574A..36R

Gamma Astro Data Specs Documentation, Release 0.1

def time_precision(time_range, float_precision):
"""Compute time precision (seconds) in float computations.

For a given `time_range` and `float_precision`, the `time_precision`
is computed as the smallest time difference corresponding to the
float precision.

time_range -- (IN) Time range of application (years)
float_precision -- (IN) {32, 64} Floating point precision
time_precision -- (OUT) Time precision (seconds)
"""
import numpy as np
YEAR_TO_SEC = 315576000

dtype = {32: np.float32, 64: np.float64}[float_precision]
t1 = dtype(YEAR_TO_SEC * time_range)
t2 = np.nextafter(t1, np.finfo(dtype).max)
print('Time range: {} years, float precision: {} bit => time precision: {:.3g}

→˓seconds.'
''.format(time_range, float_precision, t2-t1))

>>> time_precision(10, 32)
Time range: 10 years, float precision: 32 bit => time precision: 256 seconds.
>>> time_precision(10, 64)
Time range: 10 years, float precision: 64 bit => time precision: 4.77e-07 seconds.

Files

Here’s a summary of how times are stored in files:

• IACT event lists:

– Table column TIME, float64, MET

– Header keywords MJDREFI, MJDREFF – Reference time

– Header keywords TSTART, TSTOP – MET

– TSTART_STR, TSTOP_STR – UTC or TT str -> TIMESYS.

– TIMESYS, TIMEREF – need it?

• GTI extension:

– Table columns: TSTART, TSTOP, MET

– Header keywords: MJDREFI, MJDREFF – Reference time

• Observation index table

– Column TSTART, TSTOP, TMID – float, MJD, days

– Column TSTART_STR, TSTOP_STR, TMID_STR – UTC string

– No time-related header keywords.

Tools

Here’s a summary of how gamma-ray science tool codes handle times.

6 Chapter 1. Table of contents

Gamma Astro Data Specs Documentation, Release 0.1

Fermi Science Tools

The Fermi Science tools (e.g. gtselect) support only Fermi-LAT MET for user input / output (and probably also just
use MET internally). Some info on other time scales and formats is given on a docs page at Time in Fermi data
analysis, converting to MET is left up to the user. Note that no leap second table is in the code, i.e. MET – UTC
conversions are not supported (one can use Astropy for this though).

• TODO: Is this correct? How does the software store times internally?

TODO: We should also document what time scales and formats are supported by the Fermi-LAT data selection tool:

• http://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi

• http://fermi.gsfc.nasa.gov/ssc/LATDataQuery_help.html#observationDates

• http://fermi.gsfc.nasa.gov/ssc/LATDataQuery_help.html#timeSystem

This is the equivalent of our Observation index table format and observation selection tools and unless there’s a good
reason not to we should just adopt whatever Fermi-LAT does here.

Gammalib / ctools

The ctools (e.g. ctselect) use MET for user input (the reference time is taken from the event list header). Internally a
time is represented as a GTime object, which has a time scale (supports JD, MJD, TT, UTC, leap second table in the
library code) and supports different formats (including parsing ISO and ISOT strings). Internally times are stored as
64-bit float METs wrt. a single reference time defined by Gammalib. See Times in Gammalib.

TODO: this means that TIME columns in event lists are converted to that reference time on file read or attribute access?

Astropy / Gammapy

As already mentioned above, the Astropy time package contains the Time class, which supports all common scales
and formats. Internally times are stored as two 64-bit floats.

TODO: describe how MET values from event list TIME columns are converted to that internal format on read / write
in gammapy.time. TODO: where do they store leap seconds / how are those updated?

Examples

TODO: write a set of tests doing equivalent time computations using Gammalib and Astropy time (or possibly
Gammapy wrappers where useful).

1.1.3 Sky coordinates

This section describes the sky coordinates in use by science tools. It is referenced from the description of data formats
to explain the exact meaning of the coordinates stored.

We don’t have a separate section for world coordinate systems (WCS), pixel coordinates, projections, that is covered
here as well (see FITS WCS and WCSLIB for references).

We only discuss 2-dimensional sky and image coordinates here, other coordinates like e.g. time or an energy axis
aren’t covered here.

Some conventions are adopted from astropy.coordinates, which is a Python wrapper of the IAU SOFA C time and
coordinate library, which can be considered the gold standard when it comes to coordinates. In some cases code

1.1. Background information 7

http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtselect.txt
http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data/Time_in_ScienceTools.html
http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data/Time_in_ScienceTools.html
http://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi
http://fermi.gsfc.nasa.gov/ssc/LATDataQuery_help.html#observationDates
http://fermi.gsfc.nasa.gov/ssc/LATDataQuery_help.html#timeSystem
http://cta.irap.omp.eu/ctools/doc/ctselect.html
http://cta.irap.omp.eu/gammalib-devel/user_manual/modules/obs.html#times-in-gammalib
http://docs.astropy.org/en/latest/time/index.html
http://fits.gsfc.nasa.gov/fits_wcs.html
http://www.atnf.csiro.au/people/mcalabre/WCS/
http://astropy.readthedocs.org/en/latest/coordinates/index.html
http://www.iausofa.org/

Gamma Astro Data Specs Documentation, Release 0.1

examples are given using astropy.coordinates to obtain a reference value that can be used to check a given software
package (in case it’s not based on astropy.coordinates).

RA / DEC

The most common way to give sky coordinates is as right ascension (RA) and declination (DEC) in the equatorial
coordinate system.

Actually there are several equatorial coordinate systems in use, the most common ones being FK4, FK5 and ICRS. If
you’re interested to learn more about these and other astronomical coordinate systems, the references here are a good
starting point.

But in practice it’s pretty simple: when someone gives or talks about RA / DEC coordinates, they mean either ICRS
or FK5 J2000 coordinates. The difference between those two is at the sub-arcsecond level for the whole sky, i.e.
irrelevant for gamma-ray astronomy.

We recommend you by default assume RA / DEC is in the ICRS frame, which is the default in as-
tropy.coordinates.SkyCoord and also the current standard celestial reference system adopted by the IAU (see Wikipedia
- ICRS).

Galactic

The Galactic coordinate system is often used by Galactic astronomers.

Unfortunately there are slightly different variants in use (usually with differences at the arcsecond level), and there
are no standard names for these slightly different Galactic coordinate frames. See here for an open discussion which
Galactic coordinates to support and what to call them in Astropy.

We recommend you use ICRS RA / DEC for precision coordinate computations. If you do use Galactic coordinates,
we recommend you compute them like Astropy does (which I think is the most frame in use in the literature and in
existing astronomy software).

Both ICRS and Galactic coordinates don’t need the specification of an epoch or equinox.

To check your software, you can use the (l, b) = (0, 0) position:

>>> from astropy.coordinates import SkyCoord
>>> SkyCoord(0, 0, unit='deg', frame='galactic')
<SkyCoord (Galactic): (l, b) in deg (0.0, 0.0)>
>>> SkyCoord(0, 0, unit='deg', frame='galactic').icrs
<SkyCoord (ICRS): (ra, dec) in deg (266.40498829, -28.93617776)>

Alt / Az

The horizontal coordinate system is the one connected to an observer at a given location on earth and point in time.

• Azimuth is oriented east of north (i.e. north is at 0 deg, east at 90 deg, south at 180 deg and west at 270 deg). This
is the convention used by astropy.coordinates.AltAz and quoted as the most common convention in astronomy
on Wikipedia (see here).

• The zenith angle is defined as the angular separation from the zenith, which is the direction defined by the line
connecting the Earth’s center and the observer. Altitude and elevation are the same thing, and are defined as 90
degree minus the zenith angle. The reason to define altitude like this instead of the angle above the horizon is
that usually Earth models aren’t perfect spheres, but ellipsoids, so the zenith angle as defined here isn’t perfectly
perpendicular with the horizon plane.

8 Chapter 1. Table of contents

https://en.wikipedia.org/wiki/Equatorial_coordinate_system
https://en.wikipedia.org/wiki/Equatorial_coordinate_system
http://astropy.readthedocs.org/en/latest/api/astropy.coordinates.SkyCoord.html
http://astropy.readthedocs.org/en/latest/api/astropy.coordinates.SkyCoord.html
https://en.wikipedia.org/wiki/International_Celestial_Reference_System
https://en.wikipedia.org/wiki/International_Celestial_Reference_System
https://en.wikipedia.org/wiki/Galactic_coordinate_system
https://github.com/astropy/astropy/issues/3344
https://en.wikipedia.org/wiki/Epoch_(astronomy)
https://en.wikipedia.org/wiki/Equinox_(celestial_coordinates)
https://en.wikipedia.org/wiki/Horizontal_coordinate_system
http://astropy.readthedocs.org/en/latest/api/astropy.coordinates.AltAz.html
https://en.wikipedia.org/wiki/Zenith

Gamma Astro Data Specs Documentation, Release 0.1

• Unless explicitly specified, Alt / Az should be assumed to not include any refraction corrections, i.e. be valid
assuming no refraction. Usually this can be achived in coordinate codes by setting the atmospheric pressure to
zero, i.e. turning the atmosphere off.

Here’s some Astropy coordinates code that shows how to convert back and forth between ICRS and AltAz coordinates
(the default pressure is set to zero in Astropy, i.e. this is without refraction corrections):

import astropy.units as u
from astropy.time import Time
from astropy.coordinates import Angle, SkyCoord, EarthLocation, AltAz

Take any ICRS sky coordinate
icrs = SkyCoord.from_name('crab')
print('RA = {pos.ra.deg:10.5f}, DEC = {pos.dec.deg:10.5f}'.format(pos=icrs))
RA = 83.63308, DEC = 22.01450

Convert to AltAz for some random observation time and location
This assumes pressure is zero, i.e. no refraction
time = Time('2010-04-26', scale='tt')
location = EarthLocation(lon=42 * u.deg, lat=42 * u.deg, height=42 * u.meter)
altaz_frame = AltAz(obstime=time, location=location)
altaz = icrs.transform_to(altaz_frame)
print('AZ = {pos.az.deg:10.5f}, ALT = {pos.alt.deg:10.5f}'.format(pos=altaz))
AZ = 351.88232, ALT = -25.56281

Convert back to ICRS to make sure round-tripping is OK
icrs2 = altaz.transform_to('icrs')
print('RA = {pos.ra.deg:10.5f}, DEC = {pos.dec.deg:10.5f}'.format(pos=icrs2))
RA = 83.63308, DEC = 22.01450

Field of view

Field of view coordinates for a given observation have the pointing position at (0, 0).

At the moment they are only used for background modeling, where off runs are stacked in the field of view coordinate
system. We are also discussing if we should use them for IRFs like effective area, where for large field of views
a gradient due to varying zenith angle can be present and we’d like to store this dependency / use it in exposure
computations.

In detail the definition of field of view coordinates is tricky and still under discussion.

The main questions are:

• How exactly are the field of view coordinates defined?

• Is a projection (e.g. the FITS TAN aka gnomonic projection) involved or are they spherical coordinates? I.e. are
they angles or lengths?

• Are the field of view coordinate axes aligned with RA / DEC or ALT / AZ? (we probably need or at least want
both for different applications / investigations, i.e. there are two field of view coordinates.)

• How should this be stored in FITS (e.g. axis info or even WCS object in background cube models)

Here’s some useful links about the TAN projection:

• https://en.wikipedia.org/wiki/Gnomonic_projection

• http://mathworld.wolfram.com/GnomonicProjection.html

• http://bl.ocks.org/mbostock/3795048

1.1. Background information 9

https://en.wikipedia.org/wiki/Gnomonic_projection
http://mathworld.wolfram.com/GnomonicProjection.html
http://bl.ocks.org/mbostock/3795048

Gamma Astro Data Specs Documentation, Release 0.1

• http://adsabs.harvard.edu/abs/2002A%26A. . . 395.1077C

TODO: document what exactly is filled / assumed at the moment in the HESS exporters, Gammalib and Gammapy.

1.1.4 FITS Multidimensional datasets

As described e.g. here or here or in the FITS Standard, there are several ways to serialise multi-dimensional arrays
and corresponding axis information in FITS files.

Here we describe the schemes in use in gamma-ray astronomy and give examples.

IMAGE HDU

• Data array is stored in an IMAGE HDU.

• Axis information is either stored in the IMAGE HDU header or in extra BINTABLE HDUs, sometimes a mix.

• Advantage: IMAGE HDUs can be opened up in image viewers like ds9.

• Disadvantage: axis information is not self contained, an extra HDU is needed.

Example

E.g. the Fermi-LAT counts cubes or diffuse model spectral cubes are stored in an IMAGE HDU, with the information
about the two celestial axes in WCS header keywords, and the information about the energy axis in ENERGIES (for
spectral cube) or EBOUNDS (for counts cube) BINTABLE HDU extensions.

$ ftlist gll_iem_v02.fit H

Name Type Dimensions
---- ---- ----------

HDU 1 Primary Array Image Real4(720x360x30)
HDU 2 ENERGIES BinTable 1 cols x 30 rows

Let’s have a look at the header of the primary IMAGE HDU.

As you can see, there’s three axes.

The first two are Galactic longitude and latitude and the pixel to sky coordinate mapping is specified by header
keywords according to the FITS WCS standard.

I think the energy axis isn’t a valid FITS WCS axis specification. ds9 uses the C????3 keys to infer a WCS mapping
of pixels to energies, but it is incorrect. Software that’s supposed to work with this axis needs to know to look at the
ENERGIES table instead.

$ ftlist gll_iem_v02.fit K
SIMPLE = T / Written by IDL: Tue Jul 7 15:25:03 2009
BITPIX = -32 /
NAXIS = 3 / number of data axes
NAXIS1 = 720 / length of data axis 1
NAXIS2 = 360 / length of data axis 2
NAXIS3 = 30 / length of data axis 3
EXTEND = T / FITS dataset may contain extensions
COMMENT FITS (Flexible Image Transport System) format is defined in 'Astronomy
COMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H
FLUX = 8.29632317174 /

(continues on next page)

10 Chapter 1. Table of contents

http://adsabs.harvard.edu/abs/2002A%26A...395.1077C
http://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/general/ogip_94_006/ogip_94_006.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_003/cal_gen_92_003.html#tth_sEc4
http://adsabs.harvard.edu/abs/2010A%26A...524A..42P
http://fits.gsfc.nasa.gov/fits_wcs.html

Gamma Astro Data Specs Documentation, Release 0.1

(continued from previous page)

CRVAL1 = 0. / Value of longitude in pixel CRPIX1
CDELT1 = 0.5 / Step size in longitude
CRPIX1 = 360.5 / Pixel that has value CRVAL1
CTYPE1 = 'GLON-CAR' / The type of parameter 1 (Galactic longitude in
CUNIT1 = 'deg ' / The unit of parameter 1
CRVAL2 = 0. / Value of latitude in pixel CRPIX2
CDELT2 = 0.5 / Step size in latitude
CRPIX2 = 180.5 / Pixel that has value CRVAL2
CTYPE2 = 'GLAT-CAR' / The type of parameter 2 (Galactic latitude in C
CUNIT2 = 'deg ' / The unit of parameter 2
CRVAL3 = 50. / Energy of pixel CRPIX3
CDELT3 = 0.113828620540137 / log10 of step size in energy (if it is logarith
CRPIX3 = 1. / Pixel that has value CRVAL3
CTYPE3 = 'photon energy' / Axis 3 is the spectra
CUNIT3 = 'MeV ' / The unit of axis 3
CHECKSUM= '3fdO3caL3caL3caL' / HDU checksum updated 2009-07-07T22:31:18
DATASUM = '2184619035' / data unit checksum updated 2009-07-07T22:31:18
HISTORY From Ring/Hybrid fit with GALPROP 54_87Xexph7S extrapolation
HISTORY Integrated flux (m^-2 s^-1) over all sky and energies: 8.30
HISTORY Written by rings_gll.pro
DATE = '2009-07-07' /
FILENAME= '$TEMPDIR/diffuse/gll_iem_v02.fit' /File name with version number
TELESCOP= 'GLAST ' /
INSTRUME= 'LAT ' /
ORIGIN = 'LISOC ' /LAT team product delivered from the LISOC
OBSERVER= 'MICHELSON' /Instrument PI
END

BINTABLE HDU

• Data array and axis information is stored in a BINTABLE HDU with one row.

• This is called the “multidimensional array” convention in appendix B of 1995A%26AS..113..159C.

• The OGIP Calibration Memo CAL/GEN/92-003 has a section use of multi-dimensional datasets that describes
this format in greater detail.

• Advantage: everything is contained in one HDU. (as many axes and data arrays as you like)

• Disadvantage: format is a bit unintuitive / header is quite complex / can’t be opened directly in ds9.

Example

Let’s look at an example file in this format, the aeff_P6_v1_diff_back.fits which represents the Fermi-LAT
effective area (an old version) as a function of energy and offset.

It follows the OGIP effective area format.

The data array and axis information are stored in one BINTABLE HDU called “EFFECTIVE AREA”, with 5 columns
and one row:

$ ftlist aeff_P6_v1_diff_back.fits H

Name Type Dimensions
---- ---- ----------

(continues on next page)

1.1. Background information 11

http://adsabs.harvard.edu/abs/1995A%26AS..113..159C
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_003/cal_gen_92_003.html#tth_sEc4
https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_019/cal_gen_92_019.html

Gamma Astro Data Specs Documentation, Release 0.1

(continued from previous page)

HDU 1 Primary Array Null Array
HDU 2 EFFECTIVE AREA BinTable 5 cols x 1 rows

There five columns contain arrays of different length that represent:

• First axis is energy (ENERG_LO and ENERG_HI columns) with 60 bins.

• Second axis is cosine of theta (CTHETA_LO and CTHETA_HI columns) with 32 bins.

• First and only data array is effective area (EFFAREA) at the given energy and cosine theta values.

$ ftlist aeff_P6_v1_diff_back.fits C
HDU 2

Col Name Format[Units](Range) Comment
1 ENERG_LO 60E [MeV]
2 ENERG_HI 60E [MeV]
3 CTHETA_LO 32E
4 CTHETA_HI 32E
5 EFFAREA 1920E [m2]

The part that’s most difficult to understand / remember is how the relevant information is encoded in the BINTABLE
FITS header.

But note the HDUDOC = 'CAL/GEN/92-019' key. If you Google CAL/GEN/92-019 you will find that it points to
the OGIP effective area format document. document, which explains in detail what all the other keys mean.

There’s some software (e.g. fv) that understands this way of encoding n-dimensional arrays and axis information in
FITS BINTABLEs.

$ ftlist aeff_P6_v1_diff_back.fits[1] K
XTENSION= 'BINTABLE' / binary table extension
BITPIX = 8 / 8-bit bytes
NAXIS = 2 / 2-dimensional binary table
NAXIS1 = 8416 / width of table in bytes
NAXIS2 = 1 / number of rows in table
PCOUNT = 0 / size of special data area
GCOUNT = 1 / one data group (required keyword)
TFIELDS = 5 / number of fields in each row
TTYPE1 = 'ENERG_LO' /
TFORM1 = '60E '
TTYPE2 = 'ENERG_HI' /
TFORM2 = '60E '
TTYPE3 = 'CTHETA_LO' /
TFORM3 = '32E ' /
TTYPE4 = 'CTHETA_HI' /
TFORM4 = '32E ' /
TTYPE5 = 'EFFAREA ' /
TFORM5 = '1920E '
ORIGIN = 'LISOC ' / name of organization making this file
DATE = '2008-05-06T08:56:19.9999' / file creation date (YYYY-MM-DDThh:mm:ss U
EXTNAME = 'EFFECTIVE AREA' / name of this binary table extension
TUNIT1 = 'MeV ' /
TUNIT2 = 'MeV ' /
TUNIT3 = ' '
TUNIT4 = ' '
TUNIT5 = 'm2 ' /
TDIM5 = '(60, 32)'

(continues on next page)

12 Chapter 1. Table of contents

https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_019/cal_gen_92_019.html

Gamma Astro Data Specs Documentation, Release 0.1

(continued from previous page)

TELESCOP= 'GLAST ' /
INSTRUME= 'LAT ' /
DETNAM = 'BACK '
HDUCLASS= 'OGIP ' /
HDUDOC = 'CAL/GEN/92-019' /
HDUCLAS1= 'RESPONSE' /
HDUCLAS2= 'EFF_AREA' /
HDUVERS = '1.0.0 ' /
EARVERSN= '1992a ' /
1CTYP5 = 'ENERGY ' / Always use log(ENERGY) for interpolation
2CTYP5 = 'COSTHETA' / Off-axis angle cosine
CREF5 = '(ENERG_LO:ENERG_HI,CTHETA_LO:CTHETA_HI)' /
CSYSNAME= 'XMA_POL ' /
CCLS0001= 'BCF ' /
CDTP0001= 'DATA ' /
CCNM0001= 'EFF_AREA' /
CBD10001= 'VERSION(P6_v1_diff)'
CBD20001= 'CLASS(P6_v1_diff_back)'
CBD30001= 'ENERG(18-560000)MeV'
CBD40001= 'CTHETA(0.2-1)'
CBD50001= 'PHI(0-360)deg'
CBD60001= 'NONE '
CBD70001= 'NONE '
CBD80001= 'NONE '
CBD90001= 'NONE '
CVSD0001= '2007-01-17' / Dataset validity start date (UTC)
CVST0001= '00:00:00' /
CDES0001= 'GLAST LAT effective area' /
EXTVER = 1 / auto assigned by template parser
CHECKSUM= 'IpAMIo5LIoALIo5L' / HDU checksum updated 2008-05-06T08:56:20
DATASUM = '340004495' / data unit checksum updated 2008-05-06T08:56:20
END

1.1.5 Glossary

FITS

Flexible Image Transport System http://fits.gsfc.nasa.gov/

HEASARC

High Energy Astrophysics Science Archive Research Centre. http://heasarc.gsfc.nasa.gov/

OGIP FITS Standards

The FITS Working Group in the Office of Guest Investigators Program has established conventions for FITS files for
high-energy astrophysics projects. http://hesperia.gsfc.nasa.gov/rhessidatacenter/software/ogip/ogip.html

CALDB

The HEASARC’s calibration database (CALDB) system stores and indexes datasets associated with the calibration of
high energy astronomical instrumentation. http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html

1.1. Background information 13

http://fits.gsfc.nasa.gov/
http://heasarc.gsfc.nasa.gov/
http://hesperia.gsfc.nasa.gov/rhessidatacenter/software/ogip/ogip.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html

Gamma Astro Data Specs Documentation, Release 0.1

IACT

IACT = imaging atmospheric Cherenkov telescope (see wikipedia article).

Observation = Run

For IACTs observations are usually conducted by pointing the array (or a sub-array) for a period of time (typically
half an hour for current IACTs) at a fixed location in celestial coordinates (i.e. the telescopes slew in horizontal Alt/Az
coordinates to keep the pointing position RA/DEC in the center of the field of view).

For current IACTs the term “run” is more common than “observation”, but for CTA probably the term “observation”
will be used. So it’s recommended to use observation in these format specs.

Off Observation

The term “off observation” or “off run” refers to observations where most of the field of view contains no gamma-ray
emission (apart from a possible diffuse extragalactic isotropic component, which is supposed to be very weak at TeV
energies).

AGN observations are sometimes also considered “off observations”, because the fraction of the field of view contain-
ing their gamma-ray emission is often very small, and most of the field of view is empty.

For further info on background modeling see Berge (2007)

1.2 IACT event lists

This document describes IACT DL3 event lists.

Event lists are stored in FITS files with two required and one optional extensions (HDUs).

• Suggested filename: events_OBS_ID.fits.gz

• Suggested HDU name events: EVENTS

• Suggested HDU name good time intervals: GTI

• Suggested HDU name telescope array: TELARRAY

1.2.1 EVENTS extension

The first extension contains characteristic information about each event. Suggested extension name EVENTS. These
information are stored in a FITS binary table. The columns are listed below. In addition, a list of header keywords
to be contained in each FITS event list is also documented. Many of the keywords are not necessarily required for an
analysis. The information is, however, included as meta data in the event lists to enable instrument-dependent studies
and selections of particular observations.

1.2.2 Required columns

• EVENT_ID type: int

– Event identification number at the DL3 level (lower data levels could be different, see note below).

– Required: The pair (OBS_ID, `EVENT_ID) must be globally unique for all events from a given
instrument. (to be discussed . . . it’s not clear if CTA will have “runs” OBS_ID)

14 Chapter 1. Table of contents

https://en.wikipedia.org/wiki/IACT
https://en.wikipedia.org/wiki/Active_galactic_nucleus
http://adsabs.harvard.edu/abs/2007A%26A...466.1219B

Gamma Astro Data Specs Documentation, Release 0.1

– Required: EVENT_ID should increase monotonically with TIME. (to be discussed if this should be
changed to a recommendation only)

– Required: event lists should be sorted by EVENT_ID and TIME. (to be discussed if this should be
changed to a recommendation only)

• TIME type: double, unit: s

– Time stamp of event in MET

• RA type: float, unit: deg

– Event right ascension (see RA / DEC)

• DEC type: float, unit: deg

– Event declination (see RA / DEC)

• ENERGY type: float, unit: TeV

– Reconstructed event energy

1.2.3 Notes on EVENT_ID

This paragraph contains some explanatory notes concerning the requirements and recommendations on EVENT_ID.

Most analyses with high-level science tools don’t need EVENT_ID information. But being able to uniquely identify
every event is important, e.g. when comparing the high-level reconstructed event parameters (RA, DEC, ENERGY) for
different calibrations, reconstructions or gamma-hadron separations.

Assigning a unique EVENT_ID during data taking can be difficult or impossible. E.g. in H.E.S.S. we have two
numbers BUNCH_ID_HESS and EVENT_ID_HESS that only together uniquely identify an event within a given
run (i.e. OBS_ID). Probably the scheme to uniquely identify events at the DL0 level for CTA will be even more
complicated, because of the much larger number of telescopes and events.

So given that data taking and event identification is different for every IACT at low data levels and is already fixed for
existing IACTs, we propose here to have an EVENT_ID that is simpler and works the same for all IACTs at the DL3
level.

As an example: for H.E.S.S. we achive this by using an INT64 for EVENT_ID and to store EVENT_ID =
(BUNCH_ID_HESS << 32) || (EVENT_ID_HESS), i.e. use the upper bits to contain the low-level bunch
ID and the lower bits to contains the low-level event ID. This encoding is unique and reversible, i.e. it’s easy to go
back to BUNCH_ID_HESS and EVENT_ID_HESS for a given EVENT_ID, and to low-level checks (e.g. look at the
shower images for a given event that behaves strangely in reconstructed high-level parameters).

1.2.4 Optional Column Names

• MULTIP type: int

– Telescope multiplicity. Number of telescopes that have seen the event

• OBS_ID type: int

– Unique observation identifier (Run number)

• DIR_ERR type: float, unit: deg

– Direction error of reconstruction

• ENERGY_ERR type: float, unit: TeV

– Error on reconstructed event energy

1.2. IACT event lists 15

Gamma Astro Data Specs Documentation, Release 0.1

• ALT type: float, unit: deg

– Altitude coordinate of event (horizon system, see Alt / Az)

• AZ type: float, unit: deg

– Azmuth coordinate of event (horizon system, see Alt / Az)

• DETX type: float, unit: deg

– X-coordinate in detector system (nominal system, see Field of view)

• DETY type: float, unit: deg

– Y-coordinate in detector system (nominal system, see Field of view)

• THETA type: float, unit: deg

– Offset from the observation pointing position

• COREX type: float, unit: m

– Core position X of shower

• COREY type: float, unit: m

– Core position Y of shower

• CORE_ERR type: float, unit: m

– Error on core position of shower

• XMAX type: float, unit: radiation lengths

– First interaction depth

• XMAX_ERR type: float, unit: radiation lengths

– Error on first interaction depth

• HIL_MSW type: float

– Hillas mean scaled width

• HIL_MSW_ERR type: float

– Hillas mean scaled width error

• HIL_MSL type: float

– Hillas mean scaled length

• HIL_MSL_ERR type: float

– Hillas mean scaled length error

1.2.5 Required Header keywords:

• OBS_ID type: int

– Unique observation identifier (Run number)

• TELESCOP type: int

– Telescope (e.g. ‘HESS’)

• TSTART type: float, unit: s

– Start time of observation [MET]

16 Chapter 1. Table of contents

Gamma Astro Data Specs Documentation, Release 0.1

• TSTOP type: float, unit: s

– End time of observation [MET]

• TSTART_STR type: string

– Start of observation in UTC string format: “YYYY-MM-DD HH:MM:SS”

• TSTOP_STR type: string

– End of observation in UTC string format: “YYYY-MM-DD HH:MM:SS”

• MJDREFI type: int, unit: days

– Integer part of MJD time reference

• MJDREFF type: float, unit: days

– Float part of MJD time reference

• ONTIME type: float, unit: s

– Total observation time (including dead time).

– Equals TSTOP - TSTART

• LIVETIME type: float, unit: s

– Total livetime (observation minus dead time)

• DEADC type: float

– Dead time correction.

– It is defined such that LIVETIME = DEADC * ONTIME i.e. the fraction of time the telescope was
actually able to take data.

• OBJECT type: string

– Observed object

• RA_PNT type: float, unit: deg

– Obsevation pointing right ascension (see RA / DEC)

• DEC_PNT type: float, unit: deg

– Observation pointing declination (see RA / DEC)

• ALT_PNT float, deg

– Observation pointing altitude at observation mid-time TMID (see Alt / Az)

• AZ_PNT type: float, unit: deg

– Observation pointing azimuth at observation mid-time TMID (see Alt / Az)

• RA_OBJ type: float, unit: deg

– Right ascension of OBJECT

• DEC_OBJ type: float, unit: deg

– Declination of OBJECT

• TELLIST type: string

– Telescope IDs in observation (e.g. ‘1,2,3,4’)

• N_TELS type: int

1.2. IACT event lists 17

Gamma Astro Data Specs Documentation, Release 0.1

– Number of observing telescopes

• EUNIT type: string

– Unit of energies in event list (e.g. ‘TeV’)

• GEOLON type: float, unit: deg

– Geographic longitude of array centre (e.g. -23.27 for HESS)

• GEOLAT type: float, unit: deg

– Geographic latitude of array centre (e.g. -16.5 for HESS)

• ALTITUDE type: float, unit: km

– Altitude of array center above sea level (1.835 for HESS)

1.2.6 Optional header keywords

• OBSERVER type: string

– Name of observer (e.g. ‘HESS’). This could be the PI of a proposal later on.

• CREATOR type: string

– Software that created the file

• CREATED type: string

– Time when file was created (UTC): “YYYY-MM-DD HH:MM:SS”

• RADECSYS type: string

– Equatorial system type (e.g. ‘FK5’)

• EQUINOX type: float

– Base equinox (e.g. 2000.)

• TIMESYS type: string

– Time system (currently ‘TT’)

• TIMEREF type: string

– Time reference (‘LOCAL’)

• TASSIGN type: string

– Place of time reference (‘Namibia’)

• OBS_MODE type: string

– Observation mode (e.g. wobble, survey, or any mode that is supported by TELESCOP)

• DST_VER type: string

– Version of DST/Data production

• ANA_VER type: string

– Reconstruction software version

• CAL_VER type: string

– Calibration software version

• CONV_DEP type: float

18 Chapter 1. Table of contents

Gamma Astro Data Specs Documentation, Release 0.1

– convergence depth (0 for parallel pointing)

• CONV_RA type: float, unit: deg

– Convergence Right Ascension

• CONV_DEC type: float, unit: deg

– Convergence Declination

• TRGRATE type: float, unit: Hz

– Mean system trigger rate

• ZTRGRATE type: float, unit: Hz

– Zenith equivalent mean system trigger rate

• MUONEFF type: float

– Mean muon efficiency

– TODO: define how muon efficiency is defined (it’s very tricky to get a comparable number in HESS
from HD and PA calibration)

• BROKPIX type: float

– Fraction of broken pixels (0.15 means 15% broken pixels)

• AIRTEMP type: float, unit: deg C

– Mean air temperature at ground during the observation.

• PRESSURE type: float, unit: hPa

– Mean air pressure at ground during the observation.

• NSBLEVEL type: float, unit: a.u.

– Measure for NSB level

– TODO: how is this defined? at least leave a comment if it doesn’t have a clear definition and can only
be used in one chain.

• RELHUM type: float

– Relative humidity

– TODO: link to definition . . . wikipedia?

1.2.7 GTI extension

Each event list file contains an extension to specify the good time intervals (‘GTIs’). A general description of GTIs
can be found in the OGIP GTI standard. This HDU contains two columns named START and STOP. At least one
row is containing the start and end time of the observation must be present. The values are in units of seconds with
respect to the reference time defined in the associated header (keywords MJDREFI and MJDREFF). This extension
allows for a detailed handling of good time intervals (i.e. excluding periods with cloud cover or lightning during one
observation). Eventually, this extension could disappear from the required extensions. High-level Science tools could
add the GTIs to the files according to user parameter. See e.g. gtmktime for an application example from the Fermi
Science Tools. The column names and FITS header keywords are documented in the following, respectively.

1.2. IACT event lists 19

http://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/rates/ogip_93_003/ogip_93_003.html#tth_sEc6.3
https://www.slac.stanford.edu/exp/glast/wb/prod/pages/sciTools_gtmktime/gtmktime_help.htm

Gamma Astro Data Specs Documentation, Release 0.1

1.2.8 GTI Column Names

• START type: double, unit: s

– Start time of good time interval (observation) [MET]

• STOP type: double, unit: s

– End time of good time interval (observation) [MET]

1.2.9 GTI Header Keywords

• MJDREFI type: int, unit: days

– Integer part of MJD time reference

• MJDREFF type: float, unit: days

– Float part of MJD time reference

1.2.10 TELARRAY extension

To be defined

1.3 IACT IRFs

The instrument response function (IRF) formats currently in use for imaging atmospheric Cherenkov telescopes
(IACTs) are stored in FITS binary tables using the “multidimentional array” convention (binary tables with a sin-
gle row and array columns) described at BINTABLE HDU.

This format has been used for calibration data and IRF of X-ray instruments, as well as for the IRFs that are distributed
with the Fermi-LAT science tools.

At the moment (November 2015), this format is used by H.E.S.S. and VERITAS and supported by Gammapy and
Gammalib and is being proposed for DL3 IRFs (i.e. the format distributed to end users and used by the science
tools for CTA). Note that a different format has been proposed for CTA to serialise multidimensional arrays and axis
information: http://adsabs.harvard.edu/abs/2015arXiv150807437W As far as we know, this format is currently not
supported by any analysis package.

Here we specify the IRFs in use for IACT data.

1.3.1 IRF axes

Most IRFs are dependent on parameters, and the 1-dim. parameter arrays are stored in columns. The following names
are recommended:

• For energy grids, see here for basic recommendations. Column names should be ENERGY or ENERG_LO,
ENERG_HI because that is used (consistently I think) for OGIP and Fermi-LAT. For separate HDUs, the exten-
sion names should be ENERGIES or EBOUNDS (used by Fermi-LAT consistently).

• Sky coordinates should be called RA, DEC, GLON, GLAT, ALT, AZ.

• Field of view coordinates DETX, DETY or THETA, PHI for offset and azimuth angle in the field of view.

• Offset wrt. the source position should be called RAD (this is what the OGIP PSF formats use).

20 Chapter 1. Table of contents

http://adsabs.harvard.edu/abs/2015arXiv150807437W
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_003/cal_gen_92_003.html#tth_sEc7

Gamma Astro Data Specs Documentation, Release 0.1

The IRF format specs mention a recommended axis format and axis units. But tools should not depend on this and
instead:

• Use the axis order specified by the CREF header keyword (see BINTABLE HDU)

• Use the axis unit specifiec by the CUNIT header keywords (see BINTABLE HDU)

1.3.2 Specific IRFs

Effective Area

The proposed effective area format follows mostly the OGIP effective area format document.

For the moment, the format for the effective area works to satisfactory detail. Nevertheless, for instance the energy
threshold variation across the FoV is not taken into account. However, since the threshold definitions are currently
non-unified an inclusion of this variation is still arbitrary and subject to analysis chain. In addition, this feature is
currently not supported in current open source tools. We therefore keep the optional opportunity to add an individual
extension listing the energy threshold varying across the FoV. This will likely be included in future releases.

aeff_2d format

The effective area information is saved as a BINTABLE HDU with required columns listed below.

Columns:

• THETA_LO, THETA_HI – ndim: 1, unit: deg

– Field of view offset axis

• ENERG_LO, ENERG_HI – ndim: 1, unit: TeV

– Energy axis

• EFFAREA – ndim: 2, unit: none

– Effective area value as a function of true energy

• EFFAREA_RECO – ndim: 2, unit: deg

– Effective area value as a function of reco energy

Recommended axis order: ENERGY, THETA

Header keywords:

In addition to the standard header keywords the recommended energy range for the observation corresponding to the
effective area file is stored in two additional header keywords. Another optional header keyword contains the theta
squared cut that was applied in the case of a effective area generation for point-like sources.

• OBS_ID type: int

– Observation ID, run number

• LO_THRES type: float, unit: TeV

– Low energy threshold

• HI_THRES type: float, unit: TeV

– High energy threshold

• RAD_MAX type: float, unit: deg

1.3. IACT IRFs 21

https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_019/cal_gen_92_019.html

Gamma Astro Data Specs Documentation, Release 0.1

– On region radius for point-like observations

An example file is provided here.

Energy Dispersion

The energy dispersion information is stored in a FITS file with one required extensions (HDU). The stored quantity is
a PDF for the energy migration

𝜇 =
𝐸reco

𝐸true

as a function of true energy and offset. It should be normalized to unity. The migration range covered in the file must
be large enough to make this possible (Suggestion: 1/3 < 𝜇 < 3)

Transformation

For the purpose of some analysis, for example when extracting an RMF file, it is necessary to calculate the detector
response 𝑅(𝐼, 𝐽), i.e. the probability to find an energy from within a given true energy bin I of width ∆𝐸true within
a certain reconstructed energy bin J of width ∆𝐸reco. In order to do so, the following integration has to be performed
(for a fixed offset).

𝑅(𝐼, 𝐽) =

∫︀
Δ𝐸true

𝑅(𝐼, 𝐸true) 𝑑𝐸true

∆𝐸true
,

where

𝑅(𝐼, 𝐸true) =

∫︁
𝜇(Δ𝐸reco)

PDF(𝐸true, 𝜇) 𝑑𝜇

is the probability to find a given true energy 𝐸true in the reconstructed energy band J.

edisp_2d format

The energy dispersion information is saved as a BINTABLE HDU with the following required columns.

Columns:

• MATRIX type: float, dimensions: 3

– Matrix holding the probability for a given energy migration at a certain true energy and offset.

• ENERG_LO, ENERG_HI – ndim: 1, unit: TeV

– Energy axis

• THETA_LO, THETA_HI – ndim: 1, unit: deg

– Field of view offset axis

• MIGRA_LO, MIGRA_HI – ndim: 1, unit: dimensionless

– Energy migration axis (defined above)

• MATRIX – ndim: 3, unit: dimensionless

– Energy dispersion 𝑑𝑃/𝑑𝜇, see formula above.

Recommended axis order: ENERGY, MIGRA, THETA

Header keywords: none

22 Chapter 1. Table of contents

Gamma Astro Data Specs Documentation, Release 0.1

Point spread function

Introduction

The point spread function (PSF) (Wikipedia - PSF) represents the spatial probability distribution of reconstructed event
positions for a point source. So far we’re only considering radially symmetric PSFs here.

Probability distributions

• 𝑑𝑃/𝑑Ω(𝑟), where 𝑑𝑃 is the probability to find an event in a solid angle 𝑑Ω at an offset 𝑟 from the point source.
This is the canonical form we use and the values we store in files.

• Often, when comparing observered event distributions with a PSF model, the 𝑑𝑃/𝑑𝑟2 distributions in equal-
width bins in 𝑟2 is used. The relation is 𝑑Ω = 𝜋𝑑𝑟2, i.e. 𝑑𝑃/𝑑𝑟2 = (1/𝜋)(𝑑𝑃/𝑑Ω).

• Sometimes, the distribution 𝑑𝑃/𝑑𝑟(𝑟) is used. The relation is 𝑑𝑃/𝑑𝑟 = 2𝜋𝑟𝑑𝑃/𝑑Ω.

TODO: explain “encircled energy” = “encircled counts” = “cumulative” representation of PSF and define containment
fraction and containment radius.

Normalisation

PSFs must be normalised to integrate to total probability 1, i.e.∫︁ ∞

0

2𝜋𝑟𝑑𝑃/𝑑𝑟(𝑟)𝑑𝑟 = 1, 𝑤ℎ𝑒𝑟𝑒𝑑𝑃/𝑑𝑟 = 2𝜋𝑟𝑑𝑃/𝑑Ω

This implies that the PSF producer is responsible for choosing the Theta range and normalising. I.e. it’s OK to choose
a theta range that contains only 95% of the PSF, and then the integral will be 0.95.

We recommend everyone store PSFs so that truncation is completely negligible, i.e. the containment should be 99%
or better for all of parameter space.

Comments

• Usually the PSF is derived from Monte Carlo simulations, but in principle it can be estimated from bright point
sources (AGN) as well.

• Tools should assume the PSF is well-sampled and noise-free. I.e. if limited event statistics in the PSF computa-
tion is an issue, it is up to the PSF producer to denoise it to an acceptable level.

PSF formats

psf_table format

This is a PSF FITS format we agree on for IACTs. This file contains the offset- and energy-dependent table distribution
of the PSF.

This format is almost identical to the OGIP radial PSF format. The differences are that we don’t have the dependency
on azimuthal field of view position and the units are different.

Columns:

• RAD_LO, RAD_HI – ndim: 1, unit: deg

1.3. IACT IRFs 23

https://en.wikipedia.org/wiki/Point_spread_function
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_020/cal_gen_92_020.html

Gamma Astro Data Specs Documentation, Release 0.1

– Offset angle from source position

• THETA_LO, THETA_HI – ndim: 1, unit: deg

– Field of view offset axis

• ENERG_LO, ENERG_HI – ndim: 1, unit: TeV

– Energy axis

• RPSF – ndim: 3, unit: deg^-2

– Point spread function value 𝑑𝑃/𝑑Ω, see Probability distributions.

Recommended axis order: RAD, THETA, ENERGY.

Header keywords: none

psf_3gauss format

Multi-Gauss mixture models are a common way to model distributions (for source intensity profiles, PSFs, anything
really), see e.g. 2013PASP..125..719H. For H.E.S.S., radial PSFs have been modeled as 1, 2 or 3 two-dimensional
Gaussians 𝑑𝑃/𝑑Ω.

Note: A two-dimensional Gaussian distribution 𝑑𝑃/𝑑Ω = 𝑑𝑃/(𝑑𝑥𝑑𝑦) is equivalent to an exponential distribution in
𝑑𝑃/𝑥, where 𝑥 = 𝑟2 and a Rayleigh distribution in 𝑑𝑃/𝑑𝑟.

In this format, the triple-Gauss distribution is parameterised as follows:

𝑑𝑃/𝑑Ω(𝑟, 𝑆, 𝜎1, 𝐴2, 𝜎2, 𝐴3, 𝜎3) =
𝑆

𝜋

[︂
exp

(︂
− 𝑟2

2𝜎2
1

)︂
+ 𝐴2 exp

(︂
− 𝑟2

2𝜎2
2

)︂
+ 𝐴3 exp

(︂
− 𝑟2

2𝜎2
3

)︂]︂
,

where 𝑆 is SCALE, 𝜎𝑖 is SIGMA_i and 𝐴𝑖 is AMPL_i (see columns listed below).

TODO: give analytical formula for the integral, so that it’s easy to check if the PSF is normalised for a given set of
parameters.

TODO: give test case value and Python function for easy checking?

Note: By setting the amplitudes of the 3rd (and 2nd) Gaussians to 0 one can implement double (or single) Gaussian
models as well.

Columns:

• THETA_LO, THETA_HI – ndim: 1, unit: deg

– Field of view offset axis

• ENERG_LO, ENERG_HI – ndim: 1, unit: TeV

– Energy axis

• SCALE – ndim: 2, unit: none

– Absolute scale of the 1st Gaussian

• SIGMA_1, SIGMA_2, SIGMA_3 – ndim: 2, unit: deg

– Model parameter (see formula above)

• AMPL_2, AMPL_3 – ndim: 2, unit: none

24 Chapter 1. Table of contents

http://adsabs.harvard.edu/abs/2013PASP..125..719H

Gamma Astro Data Specs Documentation, Release 0.1

– Model parameter (see formula above)

Recommended axis order: ENERGY, THETA

Header keywords: none

Example data file: TODO: add HESS HAP example file as soon as available.

psf_king format

The King function parametrisations for PSFs has been in use in astronomy as an analytical PSF model for many
instruments, for example by the Fermi-LAT (see 2013ApJ. . . 765. . . 54A).

The distribution has two parameters GAMMA 𝛾 and SIGMA 𝜎 and is given by the following formula:

𝑑𝑃/𝑑Ω(𝑟, 𝜎, 𝛾) =
1

2𝜋𝜎2

(︂
1 − 1

𝛾

)︂(︂
1 +

𝑟2

2𝛾𝜎2

)︂−𝛾

This formula integrates to 1 (see Introduction).

Columns:

• THETA_LO, THETA_HI – ndim: 1, unit: deg

– Field of view offset axis

• ENERG_LO, ENERG_HI – ndim: 1, unit: TeV

– Energy axis

• GAMMA – ndim: 2, unit: none

– Model parameter (see formula above)

• SIGMA – ndim: 2, unit: deg

– Model parameter (see formula above)

Recommended axis order: ENERGY, THETA

Header keywords: none

Example data file: TODO: add HESS HAP example file as soon as available.

gtpsf format

The FITS file has the following BinTable HDUs / columns:

• PRIMARY HDU – empty

• PSF HDU

– Energy – 1D (MeV)

– Exposure – 1D (cm^2 s)

– Psf – 2D (sr^-1), shape = (len(Energy) x len(Theta)) Point spread function value 𝑑𝑃/𝑑Ω, see Proba-
bility distributions.

• THETA HDU

– Theta – 1D (deg)

Header keywords: none

Example data file: psf-fermi.fits

1.3. IACT IRFs 25

http://adsabs.harvard.edu/abs/2013ApJ...765...54A

Gamma Astro Data Specs Documentation, Release 0.1

Background

One method of background modeling for IACTs is to construct spatial and / or spectral model templates of the irre-
ducible cosmic ray background for a given reconstruction and gamma-hadron separation from Off Observation. These
templates can then be used as an ingredient to model the background in observations that contain gamma-ray emission
of interest, or to compute the sensitivity for that set of cuts.

Here we specify two formats for such background template models:

• bkg_2d models depend on ENERGY and THETA, i.e. are radially symmetric.

• bkg_3d models depend on ENERGY and field of view coordinates DETX and DETY.

Note: Generating background models requires the construction of several intermediate products (counts and livetime
histograms, both filled by cutting out exclusion regions around sources like AGN) to arrive at the models containing
an absolute rate described here. At this time we don’t specify a format for those intermediate formats.

Note: Background models are sometimes considered an instrument response function (IRF) and sometimes not (e.g.
when the background is estimated from different parts of the field of view for the same observation).

Here we have the background format specifications listed under IRFs, simply because the storage format is very similar
to the other IRFs (e.g. effective area) and we didn’t want to introduce a new top-level section besides IRFs.

bkg_2d format

The bkg_2d format contains a 2-dimensional array of post-select background rate, stored in the BINTABLE HDU
format.

Header keywords:

• HDU_CLASS = bkg_2d

• HDU_DOC = TODO

Columns:

• THETA_LO, THETA_HI – ndim: 1, unit: deg

– Field of view offset axis

– Binning is often chosen with a square root scale, so that each THETA bin has equal solid angle, which
means bins at the center of the field of view have smaller width THETA_HI - THETA_LO.

• ENERG_LO, ENERG_HI – ndim: 1, unit: TeV

– Energy axis

• BKG ndim: 2, unit: s^-1 MeV^-1 sr^-1

– Absolute post-select background rate (expected background per time, energy and solid angle).

– Note that this is not a “flux” or “surface brightness”. This is already a count rate, it doesn’t need to be
multiplied with effective area to obtain predicted counts, like gamma-ray flux and surface brightness
models do.

Recommended axis order: ENERGY, THETA

Example data file: TODO

26 Chapter 1. Table of contents

Gamma Astro Data Specs Documentation, Release 0.1

bkg_3d format

The bkg_3d format contains a 3-dimensional array of post-select background rate, stored in the BINTABLE HDU
format.

TODO: maybe we should we use TeV as units, since we use this for IACTs and also store energy in TeV?

Columns:

• ENERG_LO, ENERG_HI – ndim: 1, unit: TeV

– Energy axis

• DETX_LO, DETX_HI, DETY_LO, DETY_HI – ndim: 1, unit: deg

– Field of view coordinates binning, see Field of view

• BKG – ndim: 3, unit: s^-1 MeV^-1 sr^-1

– Absolute post-select background rate (expected background per time, energy and solid angle).

– Note that this is not a “flux” or “surface brightness”. This is already a count rate, it doesn’t need to be
multiplied with effective area to obtain predicted counts, like gamma-ray flux and surface brightness
models do.

Recommended axis order for BKG: ENERGY, DETX, DETY

Header keywords:

• HDU_CLASS = bkg_3d

• HDU_DOC = TODO

Example data file: TODO

1.4 IACT data storage

Here we give an overview of how the data storage for IACTs should look like. In general, IACT data is divided into
“runs” of a few tens of minutes of data taking. We have per-run IRFs and per run event lists. The challenge is that in
the data structure, we have to accomodate user choices on various levels:

• Reconstruction chain (e.g. paris)

• Version of FITS exporter (e.g. prod01)

• Version of internal data storage (e.g. model_deconvoluted_prod26)

• Cut configuration (e.g. mpp_std)

We here propose a two-level index file scheme to allow for arbitrary folder structures. For each directory tree contain-
ing the files of the cut configuration, two files should be present:

1.4.1 Observation index table

The observation index table is stored in a FITS file as a BINTABLE HDU:

• Suggested filename: obs-index.fits.gz

• Suggested HDU name: OBS_INDEX

It contains one row per observation (a.k.a. run) and lists parameters that are commonly used for observation selection,
grouping and analysis.

1.4. IACT data storage 27

Gamma Astro Data Specs Documentation, Release 0.1

Required columns

• OBS_ID type: int

– Unique observation identifier (Run number)

• RA_PNT type: float, unit: deg

– Obsevation pointing right ascension (see RA / DEC)

• DEC_PNT type: float, unit: deg

– Observation pointing declination (see RA / DEC)

• ZEN_PNT type: float, unit: deg

– Observation pointing zenith angle at observation mid-time TMID (see Alt / Az)

• ALT_PNT float, deg

– Observation pointing altitude at observation mid-time TMID (see Alt / Az)

• AZ_PNT type: float, unit: deg

– Observation pointing azimuth at observation mid-time TMID (see Alt / Az)

• ONTIME type: float, unit: s

– Total observation time (including dead time).

– Equals TSTOP - TSTART

• LIVETIME type: float, unit: s

– Total livetime (observation minus dead time)

• DEADC type: float

– Dead time correction.

– It is defined such that LIVETIME = DEADC * ONTIME i.e. the fraction of time the telescope was
actually able to take data.

• TSTART type: float, unit: days

– Start of observation in MJD

• TSTART_STR type: string

– Start of observation in UTC string format: “YYYY-MM-DD HH:MM:SS”

• TSTOP type: float, unit: days

– End time of observation in MJD

• TSTOP_STR type: string

– End of observation in UTC string format: “YYYY-MM-DD HH:MM:SS”

• N_TELS type: int

– Number of participating telescopes

• TELLIST type: string

– Telescope IDs (e.g. ‘1,2,3,4’)

• QUALITY type: int

– Observation data quality. The following levels of data quality are defined:

28 Chapter 1. Table of contents

Gamma Astro Data Specs Documentation, Release 0.1

* 0 = best quality, suitable for spectral analysis.

* 1 = medium quality, suitable for detection, but not spectra (typically if the atmosphere was
hazy).

* 2 = bad quality, usually not to be used for analysis.

Optional columns

The following columns are optional. They are sometimes used for observation selection or data quality checks or
analysis, but aren’t needed for most users.

• OBJECT type: string

– Primary target of the observation

– Recommendations:

* Use a name that can be resolved by SESAME

* For survey observations, use “survey”.

* For Off Observation, use “off observation”

• RA_OBJ type: float, unit: deg

– Right ascension of OBJECT

• DEC_OBJ type: float, unit: deg

– Declination of OBJECT

• TMID type: float, unit: days

– Mid time of observation in MJD (= TSTART + 0.5 * ONTIME)

• TMID_STR type: string

– Mid time of observation in UTC string format: “YYYY-MM-DD HH:MM:SS”

• EVENT_COUNT type: int

– Number of events in run

• EVENT_RA_MEDIAN type: float, unit: deg

– Median right ascension of events

• EVENT_DEC_MEDIAN type: float, unit: deg

– Median declination of events

• EVENT_ENERGY_MEDIAN type: float, unit: deg

– Median energy of events

• EVENT_TIME_MIN type: double, unit: s

– First event time

• EVENT_TIME_MAX type: double, unit: s

– Last event time

• BKG_SCALE type: float

– Observation-dependent background scaling factor. See notes below.

• TRGRATE type: float, unit: Hz

1.4. IACT data storage 29

http://cds.u-strasbg.fr/cgi-bin/Sesame

Gamma Astro Data Specs Documentation, Release 0.1

– Mean system trigger rate

• ZTRGRATE type: float, unit: Hz

– Zenith equivalent mean system trigger rate

– Some HESS chains export this at the moment and this quantity can be useful for data selection. Com-
paring values from different chains or other telescopes would require a more specific specification.

• MUONEFF type: float

– Mean muon efficiency

– Currently use definitions from analysis chain, since creating a unified specification is tricky.

• BROKPIX type: float

– Fraction of broken pixels (0.15 means 15% broken pixels)

• AIRTEMP type: float, unit: deg C

– Mean air temperature at ground during the observation.

• PRESSURE type: float, unit: hPa

– Mean air pressure at ground during the observation.

• NSBLEVEL type: float, unit: a.u.

– Measure for NSB level

– Some HESS chains export this at the moment and this quantity can be useful for data selection. Com-
paring values from different chains or other telescopes would require a more specific specification.

• RELHUM type: float

– Relative humidity

– Definition

Notes

• This table doesn’t require header keywords. We recommend FITS is used, but it can be stored e.g. in CSV as
well.

• Some of the required columns are redundant. E.g. ONTIME = TSTOP - TSTART. The motivation to declare
those columns required is to make it easy for users and tools to browse the observation lists and select observa-
tions via cuts on these parameters without having to compute them on the fly.

• Observation runs where the telescopes don’t point to a fixed RA / DEC position (e.g. drift scan runs) aren’t
supported at the moment by this format.

• Times are given as a UTC string or MJD float. This is preferred over the use of mission elapsed time (MET),
because MET requires a reference timepoint stored in header keywords MJDREFI and MJDREFF, and we felt
that having a simpler table format here that doesn’t require a header would be nice.

• Purpose / definition of BKG_SCALE: For a 3D likelihood analysis a good estimate of the background is impor-
tant. The run-by-run varation of the background rate is ~20%. The main reasons are the changing atmospheric
conditions. This parameter allows to specify (from separate studies) a scaling factor to the Background This
factor comes e.g. from the analysis of off runs. The background normalisation usually dependends on e.g. the
number of events in a run, the zenith angle and other parameters. This parameter provides the possibility to give
the user a better prediction of the background normalisation. For CTA this might be induced from atmospheric
monitoring and additional diagnostic input. For HESS we try to find a trend in the off run background normali-
sations and other parameters such as number of events per unit livetime. The background scale should be around

30 Chapter 1. Table of contents

https://en.wikipedia.org/wiki/Relative_humidity

Gamma Astro Data Specs Documentation, Release 0.1

1.0 if the background model is good. This number should also be set to 1.0 if no dependency analysis has been
performed. If the background model normalisation is off by a few orders of magnitude for some reasons, this
can also be incorporated here.

1.4.2 HDU index table

The HDU index table is stored in a FITS file as a BINTABLE HDU:

• Suggested filename: hdu-index.fits.gz

• Suggested HDU name: HDU_INDEX

The HDU index table can be used to locate HDUs. E.g. for a given OBS_ID and (HDU_TYPE and / or HDU_CLASS),
the HDU can be located via the information in the FILE_DIR, FILE_NAME and HDU_NAME columns. The path
listed in FILE_DIR has to be relative to the location of the index file.

TODO: discuss if we want to support a BASE_DIR header keyword, to allow the use case where FILE_DIR is not
relative to the index file location (e.g. in cases where the user creates or modifies the index file and doesn’t have write
permission in the folder where the data files are.)

Columns

Column Name Description Data type Required?
OBS_ID Observation ID (a.k.a. run number) int yes
HDU_TYPE HDU type (see below) string yes
HDU_CLASS HDU class (see below) string yes
FILE_DIR Directory of file (rel. to this file) string yes
FILE_NAME Name of file string yes
HDU_NAME Name of HDU in file string yes
SIZE File size (bytes) int no
MTIME Modification time double no
MD5 Checksum string no

HDU_TYPE and HDU_CLASS

The HDU_TYPE and HDU_CLASS can be used to select the HDU of interest.

The difference is that HDU_TYPE corresponds generally to e.g. PSF, whereas HDU_CLASS corresponds to a specific
PSF format. Declaring HDU_CLASS here means that tools loading these files don’t have to do guesswork to infer the
format on load.

Valid HDU_TYPE values (others optional):

• events - Event list

• gti - Good time interval

• aeff - Effective area

• psf - Point spread function

• edisp - Energy dispersion

• bkg - Background

1.4. IACT data storage 31

Gamma Astro Data Specs Documentation, Release 0.1

(can be optional, e.g. if no bkg model is available another approach has to be used)

Valid HDU_CLASS values:

• events - see format spec: IACT event lists

• gti - see format spec: TODO

• aeff_2d - see format spec: aeff_2d format

• edisp_2d - see format spec: edisp_2d format

• psf_table - see format spec: psf_table format

• psf_3gauss - see format spec: psf_3gauss format

• psf_king - see format spec: psf_king format

• psf_gtpsf – see format spec: gtpsf format

• bkg_2d - see format spec: bkg_2d format

• bkg_3d - see format spec: bkg_3d format

We recommend that HDU names are chosen to be identical to either the HDU_TYPE or the HDU_CLASS names
mentioned above. This is not a requirement, usually end users will access data via HDU index files and the HDU
names don’t matter. Or, if HDUs are accessed directly, the package or tool should be flexible to allow loading the
HDU with any name.

Future ideas

• Not required columns are for future usage when downloading and syncing files with a server.

• We keep in mind to incoorporate “CHUNK_ID” column to support splitting of runs into chunks.

The observation index provides information of meta data about each observation run. E.g. pointing in the sky, duration,
number of events, etc. The hdu index file provides a list of all available HDUs and in what files they are located.
Science tools can make use of this index files to build filenames of required files according to some user parameters.

In addition, we have an index of all available index files to simply allow a quick look on what configurations are
available. This file also provides the locations of the hdu index and observation index files.

1.4.3 Master index file

Warning: We are currently in a prototyping phase. This format is under development.

The idea is to have an index file containing and listing the locations to all further hdu index files. To allow for human-
readable and human-editable files, we use a JSON format here

• Required filename: master.json

The user copies this file from the server along with selected data. The Science tools that access this file just ignore
chains/configs that are not present on the users’ machine. Ideally, the Science tools provide the possibility to inspect
the local master index file and print the users’ options on the screen. Since all paths must be relative to the location
of the master index file, the user doesn’t have to edit and maintain the master index file. The Science tools naturally
will allow the analysis of a certain chain/config or not. Of course the user can always add own FITS productions etc
simply by hand (or locally change names of configs for convenience). The JSON table should contain an array named
datasets. Each dataset is specified by the following required keys:

32 Chapter 1. Table of contents

Gamma Astro Data Specs Documentation, Release 0.1

Required keys

• name type: string

– Unique name describing the present FITS production, e.g.”hess-hap-hd-prod01-
std_zeta_fullEnclosure”.

• hduindx type: string

– Location of corresponding hdu index file. This path must be relative to the location of the master
index file

• obsindx type: string

– Location of corresponding observation index file. This path must be relative to the location of the
master index file

Of course any optional and additional information can be added, e.g. the telescope name, analysis chain, cut configu-
ration, etc. The Science tools should be able to show these information to the user to simplify the choice for a preferred
FITS production.

Here is an example of the master index file:

{
"datasets": [

{
"name": "fits-prod1-stdcuts",

"obsindx": "relative/path/to/prod1-std/obs-index.fits.gz",
"hduindx": "relative/path/to/prod1-std/hdu-index.fits.gz",

"comment": "First test version",
"drawback": "Not all data available"

},
{

"name": "fits-prod2-hardcuts",
"obsindx": "relative/path/to/prod2-hard/obs-index.fits.gz",

"hduindx": "relative/path/to/prod2-hard/hdu-index.fits.gz",
"recommendation:": "use for science publications"

}
]

}

Note that the keywords “comment”, “drawback” and “recommendation” are arbitray and can be added from the user
or maintainer of the master index file. The Science tools can display them for the user to get more details about each
FITS dataset on the users’ machine.

1.5 OGIP 1D spectrum data formats

The IACT event lists and 2D IACT IRFs can be transformed into a 1D counts vector and 1D IRFs that can serve as input
to general X-ray spectral analysis packages such as Sherpa. For an introduction to this so-called OGIP data format
please refer to the official Documentation on HEASARC.

The following section only highlight differences and modifications made to the OGIP standard in order to meet the
requirements of gamma-astronomy.

1.5.1 PHA file

The OGIP standard PHA file format is described here.

1.5. OGIP 1D spectrum data formats 33

http://cxc.harvard.edu/sherpa/
https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/spectra/ogip_92_007/ogip_92_007.html
https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/spectra/ogip_92_007/node5.html

Gamma Astro Data Specs Documentation, Release 0.1

TODO: Should an EBOUNDS extension be added to the PHA file (channels -> energy)? In OGIP this info has to be
extraced from the RMF file.

The values of following header keywords need some attention when using them for IACT analysis.

• BACKSCAL

– For now it is assumed that exposure ration between signal and background counts does not depend on
energy, thus this keyword must be set

– The BACKSCAL keywords in the PHA and the BKG file must be set so that

𝛼 =
PHAbackscal

BKGbackscal

– It is recommended to set the BACKSCAL keyword to 1 in the PHA file and to 1/𝛼 in the BKG file

Additional header keyword that can be stored in the PHA header for IACT analysis are listed below.

• OFFSET type: float, unit deg

– Distance between observation position and target of a spectral analysis

• MUONEFF type: float

– Muon efficiency of the observation

• ZENITH type: tbd, unit: deg

– Zenith angle of the observation

• ON-RAD type: float, unit deg

– Radius of the spectral extraction region

– Defines the spectral extraction region together with the standard keywords RA-OBJ and DEC-OBJ

1.5.2 BKG file

The values of following header keywords need some attention when using them for IACT analysis.

• BACKSCAL

– It is recommended to set the BACKSCAL keyword to 1/𝛼 in the BKG file (see above)

1.5.3 ARF file

The OGIP standard ARF file format is described here.

Additional header keyword that can be stored in the ARF header for IACT analysis are listed below.

• LO_THRES type: tbd, unit: TeV

– Low energy threshold of the analysis

• HI_THRES type: tbd, unit: TeV

– High energy threshold of the analysis

34 Chapter 1. Table of contents

http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html#tth_sEc4

Gamma Astro Data Specs Documentation, Release 0.1

1.5.4 RMF file

The OGIP standard RMF file format is described here.

How an RMF file can be extracted from a IACT 2D energy dispersion file is explained in Energy Dispersion.

1.6 Source Models

What UCDs could spectral models use?

The file `spectral_models.yaml defines a minimum specification for the names of the models, the name of the
parameters and the minimum properties these parameters should have.

1.6.1 Spectral models

TODO: describe

1 NewUCDs:
2 - model
3 - model.param
4 - model.spectral
5

6 SpectralModel:
7 name:
8 type: str
9 description: Name

10 ucd:
11 norm:
12 type: float
13 description: Global normalization
14 ucd: phot.flux.density
15

16 PowerLaw:
17 type: SpectralModel
18 reference:
19 type: float
20 description: Value at which normalization is defined.
21 ucd: [em.wl, em.energ, em.freq]
22 index:
23 type: float
24 description: Spectral index
25 ucd: spect.index
26

27 BrokenPowerLaw:
28 type: SpectralModel
29 index1:
30 type: float
31 description: Spectral index below the break.
32 ucd: spect.index
33 index2:
34 type: float
35 description: Spectral index above the break.
36 ucd: spect.index
37 break:
38 type: float

(continues on next page)

1.6. Source Models 35

http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html#tth_sEc3.1

Gamma Astro Data Specs Documentation, Release 0.1

(continued from previous page)

39 description: Value at which spectral index changes.
40 ucd: [em.wl, em.energ, em.freq]
41

42 LogParabola:
43 type: SpectralModel
44 reference:
45 type: float
46 description: Value at which normalization is defined.
47 ucd: [em.wl, em.energ, em.freq]
48 alpha:
49 type: float
50 description: Spectral index at break value.
51 ucd: spect.index
52 beta:
53 type: float
54 description: Rate of spectral index chane.
55 ucd: spect.index
56 break:
57 type: float
58 description: Value at which alpha is defined.
59 ucd: [em.wl, em.energ, em.freq]
60

61 ExponentialCutoffPowerLaw:
62 type: SpectralModel
63 reference:
64 type: float
65 description: Value at which normalization is defined.
66 ucd: [em.wl, em.energ, em.freq]
67 index:
68 type: float
69 description: Spectral index
70 ucd: spect.index
71 cutoff:
72 type: float
73 description: Value of the exponential cutoff.
74 ucd: [em.wl, em.energ, em.freq]
75 beta:
76 type: float
77 description: Hardness of the exponential cutoff.
78 ucd:
79

80 ExponentialCutoffBrokenPowerLaw:
81 type: SpectralModel
82 reference:
83 type: float
84 description: Value at which normalization is defined.
85 ucd: [em.wl, em.energ, em.freq]
86 index1:
87 type: float
88 description: Spectral index below the break.
89 ucd: spect.index
90 index2:
91 type: float
92 description: Spectral index above the break.
93 ucd: spect.index
94 break:
95 type: float

(continues on next page)

36 Chapter 1. Table of contents

Gamma Astro Data Specs Documentation, Release 0.1

(continued from previous page)

96 description: Value at which spectral index changes.
97 ucd: [em.wl, em.energ, em.freq]
98 cutoff:
99 type: float

100 description: Value of the exponential cutoff.
101 ucd: [em.wl, em.energ, em.freq]
102 beta:
103 type: float
104 description: Hardness of the exponential cutoff.
105 ucd:

1.6.2 Spatial models

TODO: describe

1 NewUCDs:
2 - model
3 - model.param
4 - model.spectral
5

6 SpectralModel:
7 name:
8 type: str
9 description: Name

10 ucd:
11 norm:
12 type: float
13 description: Global normalization
14 ucd: phot.flux.density
15

16 PowerLaw:
17 type: SpectralModel
18 reference:
19 type: float
20 description: Value at which normalization is defined.
21 ucd: [em.wl, em.energ, em.freq]
22 index:
23 type: float
24 description: Spectral index
25 ucd: spect.index
26

27 BrokenPowerLaw:
28 type: SpectralModel
29 index1:
30 type: float
31 description: Spectral index below the break.
32 ucd: spect.index
33 index2:
34 type: float
35 description: Spectral index above the break.
36 ucd: spect.index
37 break:
38 type: float
39 description: Value at which spectral index changes.
40 ucd: [em.wl, em.energ, em.freq]

(continues on next page)

1.6. Source Models 37

Gamma Astro Data Specs Documentation, Release 0.1

(continued from previous page)

41

42 LogParabola:
43 type: SpectralModel
44 reference:
45 type: float
46 description: Value at which normalization is defined.
47 ucd: [em.wl, em.energ, em.freq]
48 alpha:
49 type: float
50 description: Spectral index at break value.
51 ucd: spect.index
52 beta:
53 type: float
54 description: Rate of spectral index chane.
55 ucd: spect.index
56 break:
57 type: float
58 description: Value at which alpha is defined.
59 ucd: [em.wl, em.energ, em.freq]
60

61 ExponentialCutoffPowerLaw:
62 type: SpectralModel
63 reference:
64 type: float
65 description: Value at which normalization is defined.
66 ucd: [em.wl, em.energ, em.freq]
67 index:
68 type: float
69 description: Spectral index
70 ucd: spect.index
71 cutoff:
72 type: float
73 description: Value of the exponential cutoff.
74 ucd: [em.wl, em.energ, em.freq]
75 beta:
76 type: float
77 description: Hardness of the exponential cutoff.
78 ucd:
79

80 ExponentialCutoffBrokenPowerLaw:
81 type: SpectralModel
82 reference:
83 type: float
84 description: Value at which normalization is defined.
85 ucd: [em.wl, em.energ, em.freq]
86 index1:
87 type: float
88 description: Spectral index below the break.
89 ucd: spect.index
90 index2:
91 type: float
92 description: Spectral index above the break.
93 ucd: spect.index
94 break:
95 type: float
96 description: Value at which spectral index changes.
97 ucd: [em.wl, em.energ, em.freq]

(continues on next page)

38 Chapter 1. Table of contents

Gamma Astro Data Specs Documentation, Release 0.1

(continued from previous page)

98 cutoff:
99 type: float

100 description: Value of the exponential cutoff.
101 ucd: [em.wl, em.energ, em.freq]
102 beta:
103 type: float
104 description: Hardness of the exponential cutoff.
105 ucd:

Other references:

• http://docs.astropy.org/en/stable/modeling/

• http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html

1.7 High-level results

Here we describe a few data format specs for high-level results.

Science tools are encouraged to use these formats for easy interoperability with other codes (e.g. to check results,
combine results in one plot, . . .).

1.7.1 Flux points

TODO. See https://github.com/open-gamma-ray-astro/gamma-astro-data-formats/issues/6

1.7.2 Light curve

TODO: write a spec. how to store light curves in a table.

• Are there any standard formats for light curves? (e.g. a VO spec?)

• See monthly light-curves in the Fermi catalogs

• http://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/ap_lcs.php

• See https://github.com/gammapy/gammapy/issues/281

1.7. High-level results 39

http://docs.astropy.org/en/stable/modeling/
http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html
https://github.com/open-gamma-ray-astro/gamma-astro-data-formats/issues/6
http://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/ap_lcs.php
https://github.com/gammapy/gammapy/issues/281

	Table of contents

